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Forward and Backward Running
Waves in the Arteries: Analysis
Using the Method of
Characteristics

The one-dimensional equations of flow in the elastic arteries are hyperbolic and ad-
mit nonlinear, wavelike solutions for the mean velocity, U, and the pressure, P.
Neglecting dissipation, the solutions can be written in terms of wavelets defined as
differences of the Riemann invariants across characteristics. This analysis shows
that the product, dUdP, is positive definite for forward running wavelets and
negative definite for backward running wavelets allowing the determination of the
net magnitude and direction of propagating wavelets from pressure and velocity
measured at a point in the artery. With the linearizing assumption that intersecting
wavelets are additive, the forward and backward running wavelets can be separately
calculated. This analysis, applied to measurements made in the ascending aorta of
man, shows that forward running wavelets dominate during both the acceleration
and deceleration phases of blood flow in the aorta. The forward and backward run-
ning waves calculated using the linearized analysis are similar to the results of an im-
pedance analysis of the data. Unlike the impedance analysis, howeuver, this is a time

domain analysis which can be applied to nonperiodic or transient flow.

Introduction

The shape of the pressure and flow pulses in the large
arteries is the result of a complex, dynamic interaction be-
tween the mechanical properties of the left ventricle and the
systemic arteries. The wave nature of flow in the arteries,
described by Young [1], has enabled this cardiovascular in-
teraction to be studied in terms of the propagation of forward
running waves originating in the ventricle and backward run-
ning, reflected waves.

The normal periodicity of the cardiac cycle has led to the use
of Fourier analysis in the now well-established calculation of
arterial impedance [2]. This calculation requires a number of
assumptions; that there is a linear relation between the
pressure and flow rate at each frequency, so that the separate
harmonic components can be superimposed and, implicitly,
that the system is in steady-state oscillation. These assump-
tions and the observation that the flow is in phase with the
pressure in forward running waves and 180 deg out of phase in
backward running waves allow one to calculate the magnitude
of the oscillatory portion of the separated forward and
backward running waves which constitute the measured
pressure and flow [3-5].

The method of characteristics is an alternative mode of
analysis of one-dimensional waves which has been used in
analogous problems in gas dynamics [6] and does not
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necessarily assume either linearity or periodicity. In this paper
we will develop this mode of analysis and explore the potential
value of its application to the arterial system with particular
reference to measurements obtained in the ascending aorta of
man.

Theory and Results

The one-dimensional equations of flow in an impermeable,
uniform elastic tube can be written [7-11]

S, +(US),=-W

U +UU,=—-Pz/p+F, N
where § is the cross-sectional area, U and P are the spatially
averaged velocity and pressure, p is the density of the fluid, W
is the volume flow rate per unit length out of the tube, F
represents the net effect of shear stresses at the wall of the
tube, z is the distance along the tube, # is time and subscripts
denote partial differentiation. In general, the dissipation func-
tion F(P,U)<0 for U>0. If the area of the tube depends only

upon the instantaneous local pressure, S=A(P; z,f), then
these equations can be written in terms of P and U

P, +UP,+pc?U,= —pcX(W+ A, + UA,)/A )
U,+1/pP,+ UU,=F,

where ¢? = A/p(dA/dP) is the square of the wave speed which,
in general, is a function of the pressure [12]. These first-order
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Fig. 1 A sketch of intersecting forward (R +) and backward (R _) run-
ning characteristics plotted in the z—t plane. A unique pair of
characteristics intersect at every point (z,1), forming an alternative coor-
dinate system. As P and U measurements are usually taken at a fixed
site, we show z; =2z, although this is not a necessary condition. The dif-
ference operator, d, is defined as the difference between two
characteristics.

partial differential equations are hyperbolic in nature and are
therefore amenable to analysis by the method of
characteristics. The characteristic directions for these equa-
tions are defined by, dz/dt=U=c, where the positive sign
refers to the “‘forward” characteristic and the minus to the
““backward” characteristic direction. Along these charac-
teristic directions, the equations reduce to the ordinary dif-
ferential equations

au 1 dP

[
=F
dl e ar a4

(W+A,+UA,)

on ﬂ: U=xc. 3)
dt

If ¢=c(P), these equations can be written in terms of the
Riemann functions, R,

P
R*=Ui5 i . @)
P, pC

Previously, these equations have been used primarily to
predict the development of the propagating pulse wave which
involves the evaluation of the right hand side of equation (3).
In this work we take a slightly different point of view, using
the equations to interpret measured changes of pressure and
velocity at a fixed point in terms of the infinitesimal
wavefronts, or ‘‘wavelets,”” coincident at the point of
measurement. In regions away from branches and arterial
discontinuities, it is reasonable to assume that viscous losses
and flow out of the artery are negligible locally and that the
artery is uniform and constant in its properties. In this case,
which we assume in the rest of the paper, the right-hand side
of equation (3) is zero and R, =constant along the
characteristic directions are the most general solutions of these
equations and R, are called the Riemann invariants.

Any changes in pressure or velocity which are imposed on
the flow will cause a change in R, which will propagate along
their characteristic directions. Consider two waves inter-
secting, looking in particular at the two pairs of characteristics
which intersect at (z,,,) and (z,,t,) (Fig. 1). In the forward
running wave the two characteristics are associated with two
Riemann invariants R, and R, ,, and from their definition
we can write

P dP
Py pcC

R+2—R+1=U2—U,+§ 5)
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Fig. 2 The pressure, P, measured in the ascending aorta of a patient
with normal cardiac function together with the rate of energy flux per
unit area, dPDU, calculated from the measured data. The data shown are
the ensemble average values calculated from 16 consecutive cardiac
cycles using the Q-wave of the ECG to determine beat starts. The data
were digitized with a sample period of 10 ms and the differences were
calculated using a centered difference scheme.

Similarly, the two backward running characteristics are
associated with the two Riemann invariants, R_, and R_,,
and from their definition

Py dP
i ©)

R_Z_R_].:UZ_UI_'gPI pc

If the waves are continuous we can define the difference
operator, d, as df=f(z,, t;) — f(z,,t,) and write

dR, =dU=xdP/pc. (7
These two equations can be solved for dP and dU

dP=pc(dR, —dR _)/2 8)
dU=(dR, +dR_)/2.
The product
dPdU=pc(dR,?>—dR _%)/4 )]

has the potentially useful property that forward running
wavelets, both compression (dP>0) and expansion (dP<0),
make a positive contribution to the product while backward
running wavelets make a negative contribution.

dPdU has the dimensions of rate of energy flux per unit
area, W/m?, and corresponds to acoustic intensity [10]. It
refers to the energy flux associated with the wave motion only
and is a much smaller quantity than the flow power per unit
area, PU.

Figure 2 shows the results of this analysis applied to the
blood pressure and velocity measured by catheter mounted
pressure and electromagnetic velocity sensors positioned in the
ascending aorta of a normal man [13]. At this fixed site, dP
and dU were calculated as the differences between P and U
measured at 10 ms intervals. The figure includes the ensemble
average pressure and velocity for 16 consecutive beats taking
the Q-wave of the ECG as the starting point for each beat.
There are two distinct positive peaks of dPdU during left ven-
tricular ejection. The first peak occurs during early systole and
represents a forward running compression wave produced by
the initial contraction of the left ventricle. After a period of
about 250 ms, there is a second positive peak which cor-
responds to a forward running expansion wave, This wave,
also of left ventricular origin, causes deceleration resulting in
flow reversal and aortic valve closure. Apart from these two
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Fig. 3 The measured pressure, P, and velocity, U, together with the
calculated rate of energy flux per unit area, dPdU. The dotted lines
denote the Q-wave of the simultaneously measured ECG. These data are
the basis of the ensemble averaged data shown in Fig. 2. It is noted that
the velocity data are much “noisier” than that obtained using cuff type
flow meters which may be the result of the lower signal to noise ratio of
catheter mounted probes or movement of the catheter within the artery
or may be the result of velocity disturbances present in the ascending
aorta.

dominating forward running waves, relatively little net wave
motion is indicated.

Figure 3 shows the result of this analysis applied to a por-
tion of the continuous data from which the ensemble averages
in the previous figure were obtained. The second positive peak
of dPdU, corresponding to a forward running expansion
wave, is consistently present but varies in magnitude from beat
to beat. A smaller mid-systolic negative peak, corresponding
to a backward running, or reflected wave, is apparent in a
number of beats. The lack of a more distinct negative peak in
the ensemble averaged data in Fig. 2 probably indicates the
variability of the time of arrival of the reflected wavelets.

Despite its simplicity, this mode of analysis is quite general.
The nonlinear nature of the flow has been retained and the
wave speed is dependent upon the instantaneous pressure.
Also, the analysis of wavelets is not particularly restricting
since any finite waveform may be considered as the sum of
successive wavelets, although the mean pressure cannot be
assigned to either the forward or the backward wave.

When a wavelet encounters a discontinuity in the tube
properties, a similar analysis across the discontinuity shows

that both a reflected and a transmitted wavelet may result [10]..

The nature of the reflected wavelet and the relative magnitude
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Fig. 4 The ratio dU/dP calculated from the data shown in Fig. 2 during
the two peaks in dPdU. When forward running waves dominate, this
ratio is equal to 1/pc. The line is fitted by eye and corresponds to a wave
speed of 4.8 m/s.

of the reflected to the transmitted wavelet will depend upon
the type and severity of the discontinuity. The wave pattern
formed by wavelet reflection and re-reflection in the arterial
system may be very complex and may explain the difficulties
encountered in following the propagation of individual
wavelets.

However, considering an isolated wavelet propagating into
a region of uniform conditions, the relationship between the
pressure and the velocity changes across the wavelet follows
from the conservation of either mass or momentum

dP, = +pcdU, . (10)

It is thus possible to obtain an estimate of the pressure de-
pendent speed of propagation of a wavelet in the artery during
periods when wavelet travel is essentially unidirectional.
Figure 4 shows the ratio dU/dP as a function of the instan-
taneous pressure calculated during the positive peaks of dPdU
in Fig. 2 when forward running wavelets predominate. There
are relatively few points as the periods of unidirectional
wavelet travel were brief. The points at lower pressure corre-
spond to the initial compression wave while those at higher
pressure correspond to the expansion wave. In this patient the
wave speed changed little between peak and trough pressures
and so a constant wave speed was assumed. The line in the
figure was fitted by eye and, assuming that the density of
blood is 1.04 x 10* kg/m?, corresponds to a wave speed of 4.8
m/s.

Up to this point, the analysis has retained the nonlinear
nature of the basic equations. With the further assumption
that the changes in pressure and velocity associated with the
waves are additive when they intersect, that is
dP=dP, +dP_ and dU=dU, +dU_, it is possible to
separate the measured P and U into forward and backward
running components. This assumption is essentially the
linearizing acoustic assumption of gas dynamics and will not
be generally true for finite waves. Substituting into equation
(8), the changes in pressure and velocity associated with the
forward and backward running wavelets can be calculated
from the measured data

dP, = (dP+pcdU)/2
dU, =(dU=dP/pc)/2.

If pc is taken to be the characteristic impedance, the integrated
form of these equations are identical to those derived
previously using impedance arguments [14].

11
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Fig. 5 The incremental pressure changes in the ( )-forward and
(-===- )-backward running wavelets calculated from the data shown in

Fig. 2 using equation (11)

Figure 5 shows the incremental pressure changes for the for-
ward and backward running wavelets calculated from equa-
tion (11) using the value of 1/pc determined from Fig. 4 as
described above. The finite forward and backward running
pressure waves obtained by integrating the incremental curves
are shown in Fig. 6. Also shown in Fig. 6 are the forward and
backward running waves calculated from the same data using
an impedance analysis [4]. The characteristic impedance, Z,,
was taken as the minimum impedance rather than the average
of the higher frequency impedances as suggested by Westerhof
et al., which, due to the relatively noisy velocity data, gave
unreasonable results. The results of our impedance calcula-
tions are similar to those of other studies [15, 16] and resemble
the results we have obtained using the method of
characteristics,

Discussion

The analysis presented above, although simple, is general
and may have advantages over other modes of analysis. The
one-dimensional equations of motion for the fluid, equation
(1), are based on several assumptions of which possibly the
most limiting is the assumption of uniform velocity across the
tube. If the velocity profile is not flat, extra terms depending
upon the shape of the velocity profile appear on the right hand
side of the momentum equations [17]. The one-dimensional
equations retain the nonlinear nature of the flow and their
solution in terms of the Riemann functions, equation (4), is
general. The Riemann functions are constant along the
characteristic directions only for the special case of a uniform,
impermeable tube with negligible dissipation in which case
they are usually called the Riemann invariants. These assump-
tions would be overly restrictive if applied to the arterial
system as a whole but analysis of pressure and velocity
measured at a single point requires only local validity. That is,
as long as the assumptions are valid in the neighbourhood of
the measurement site the analysis is valid.

The application of the theory to wavelets is also general
since any finite wave can be described as the resultant of
wavelets. Equation (7) should not be taken as a linearization
of the analysis since ¢ =c(P). If the wavelet analysis is used to
follow finite waves, this dependence of the wavelet speed on
the local pressure may lead to changes in the waveform as the
wave propagates and can explain the steepening and
amplification of the pressure pulse in the systemic arteries [7].

We regard the calculation of the rate of energy flux per unit
area from pressure and velocity measured at a fixed point by
equation (9) as an important result of this analysis. The
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Fig. 6 A comparison of the composite forward and backward running
waves calculated by the method of characteristics and by an impedance
analysis. P—( ) is the ensemble averaged pr re. P —( )
and P_ —(~~~~) are the integrated forward and backward running waves
calculated from the data shown in Fig. 5. Py — ¢ ) and Py, —(=="")
are the forward and backward running waves calculated for the same
data using the method of Westerhof et al. [4]. The scale refers to the
measured pressure. The scale of the other curves is the same but
because the absolute value is arbitrary in both analyses, the absolute
value of the ordinate is suppressed.

positive contribution of forward running waves and the
negative contribution of backward running waves provides a
simple means of evaluating the relative importance of forward
and backward wavelets from measurements taken at a single
point. The quantity dPdU can be calculated directly from the
measured pressure and velocity. It requires no assumption of
linearity, periodicity or knowledge of the wave speed and, us-
ing suitable differentiating filters, may be performed in real
time,

The separation of the measured pressure and velocity into
forward and backward components using the method of
characteristics does, however, require knowledge of the wave
speed. During periods when either forward or backward run-
ning wavelets predominate, the wave speed can be determined
from equation (10). In general, ¢ = ¢(P), and the calculation of
dU/dP during the initial compression wave could provide a
convenient measure of local wave speed as a function of
pressure. The results for the ensemble averaged data shown in
Fig. 4 suggest that the wave speed may be constant over the
range of pressures measured in this particular subject.

The further more restricting assumption that coincident for-
ward and backward running wavelets are simply additive
enables the separate calculation of the forward and backward
running wavelets from the pressure and velocity measured at a
single point. These assumptions linearize the problem and, as
might be expected, the results shown in Fig. 6 are similar to
those of the impedance analysis which also assumes linearity.
The assignment of the mean pressure between the forward and
backward running waves is arbitrary in both analyses and we
have followed the convention of equal apportionment.

Analysis of arterial flow in terms of wavelets has a number
of advantages. The method of characteristics which gives rise
to the concept of a wavelet retains the nonlinear nature of the
flow. The analysis is done in the time domain and can be ap-
plied to transient and nonperiodic phenomena. The prevailing
direction of wavelet motion at any time is indicated by the sign
of dPdU. Since the calculation of dPdU involves only dif-
ferences, it does not include work or energy contributions
from the mean pressure and flow and so cannot be interpreted
as a measure of the total work done by the heart. It is
analogous to acoustic intensity and may be taken as a measure
of that part of the fluid energy which is due to the existence of
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wavelets. Whether or not dPdU will be as useful a concept in
arterial dynamics as acoustic intensity is in acoustics is an open
question which this paper is intended to introduce, not
answer.

The ratio dU/dP is a measure of the instantaneous wavelet
speed during periods when wavelet motion is unidirectional. If
validated by independent measurement, it would provide a
convenient means of determining the local arterial wave speed
from measurements taken at a single site. Thus, if the intersec-
ting wavelets are additive, the forward and backward waves of
pressure and velocity can be calculated, again in the time do-
main from measurements taken at a single site.

An initial application of this analysis to measurements of P
and U in the ascending aorta of man indicates clearly that both
the early systolic acceleration and the late systolic deceleration
of the blood are caused by forward running wavelets
originating in the left ventricle. The early systolic compression
wave may be the initial ventricular impulse [18] but the
dominance of the forward running expansion wave in late
systole has not, to our knowledge, been discussed. We
speculate that it would be advantageous if the energy of
deceleration was recovered, stored and subsequently released
by elastic recoil of the ventricular wall, so facilitating left ven-
tricular filling [19].
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Fellow. KHP is grateful for the support of the Clothworkers
Foundation.
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